Numerical verification on

Wavelet-based VRA method

for bridge damage detection

Yamamoto Lab., LAFEE, GSSIE, Dept. of Eng. Mechanics and Energy **University of Tsukuba**

Kyosuke YAMAMOTO Graduated from Graduated School of Engineering, **Kyoto University**

The 28th **KKHTCNN** Symposium on Civil Engineering 16-18/Nov, 2015, Thailand

Assistant Professor **Kyosuke YAMAMOTO**

Undergraduate Student KOSUKE MORI

Graduate Student Mikio ISHIKAWA

Engineers & Money

Strategic Allocation of Resources

in bridge maintenance beyond the boundary of local governments

Traditional analysis:

New analysis:

Frequency to scale

Continuous Wavelet Transform

Wavelet Coefficient
$$Wf(t,s) = \frac{1}{\sqrt{s}} \cdot f(t) \otimes \frac{\theta_s(t)}{convolution}$$

Direct calculation

Vehicle-Bridge Interaction System

Repeat calculation

Vehicle System

modeled by

RBSM

Road Unevenness

Bridge Vibration Vehicle Vibration

Δ

Non-Linear system

System parameters depending on the position of the vehicle (Un-steady: memory-consuming!) Contact Force ▼△

Bridge System

modeled by

3D-FEM

Model parameters

Global	Span Length [m]		40.0
	Width [m]		6.0
Deck	Element	Axial Direction	20
	Division	Cross Direction	10
	Density [kg/m³]		2400
	Thickness [m]		0.40
	Young's Modi	ulus [Pa]	25×10^{9}
	Density [kg/m ³]		7800
	Young's Modulus [Pa]		200×10^{9}
Truss	Cross Section [m ²]		0.020
Member	Second Moment of Area [m ⁴]		1.0×10^{-4}
	Shear Modulus of Rigidity		78×10^{9}
	Second Polar	1.0×10^{-6}	

Vehicle Model

Sprung-	Mass [kg]	18,000
	Damping [kg/s]	10,000
	Stiffness [kg/s ²]	1.0×10^{6}
	Inertia Moment (Pitch) [kg m ²]	65,000
	Inertia Moment (Roll) [kg m²]	15,000
	Length [m]	2.750
	Width [m]	1.800
Unsprung-	Mass [kg]	1,100
	Damping [kg/s]	30,000
	Stiffness [kg/s ²]	3.5×10^{6}
	Run speed [m/s]	10.0

Difficult to find change in **Time** and **Frequency** domain!

Easy to find change in Time-Frequency domain!

- Every mother wavelet can detect change
- The scale in which change appears is different

Traditional analysis:

Time Domain

Acceleration

Localylymmy

Frequency Domain

Fourier Transform

Stiffness Decreasing

New analysis:

Time-Frequency Domain

CWT

Bridge Damage

= Local Stiffness
Decreasing

Conclusion

- I. CWT can detect the bridge damage in the **High scale**.
- II. CWT can identify the damaged location.
- III. Bridge damage affects the low frequency.

Technical issues

- I. Impossible to measure the **super low frequency** of acceleration
- II. Consider the **appropriate** mother wavelet for signal

Experiment of actual bridge

can Not detect

